High Temperature, Vol. 36, No. 4, 1998, pp. 583-592. Translated from Teplofizika Asokikh Temperatur, Vol. 36, No. 4, 1998, pp. 607-616.

Original Russian Text Copyright © 1998 by Garbaruk, Lapin. Strelets.

HEAT AND MASS TRANSFER
AND PHYSICAL GASDYNAMICS

The Use of Inverse Method of Solving Boundary-Layer
Equations for the Testing of Turbulence Models

A. V. Garbaruk, Yu. V. Lapin, and M. Kh. Strelets
St. Petersburg State Technical University, St. Petersburg, 195251 Russia

Received July 14, 1997

Abstract—Comparison is made of the classical direct method and the so-called inverse method of solving tur-
bulent boundary-layer equations as applied to the problem of testing of turbulence models. In the case of the
direct method, it is assumed that the velocity distribution along the external bound of the boundary layer is
known from experiment, and, in the case of the inverse method, it is assumed that it is the longitudinal distri-
bution of the displacement thickness that is preassigned from experiment. It is demonstrated that the inverse
method (which, unlike the direct one, does not require the preassignment of the longitudinal gradient of velocity
at the external bound of the boundary layer) enables one to derive more objective (free of arbitrariness in pre-
assigning the input data) information about the capabilities of the turbulence models being tested. This method
is used to perform a detailed investigation of the capabilities of a wide scope of algebraic, semidifferential, and
differential turbulence models in calculating boundary layers with adverse, accelerating, and alternating-sign
pressure gradients, and conclusions are formulated about the advantages and disadvantages of individual models.

INTRODUCTION

The calibration and testing of semiempirical turbu-
lence models, that is, the determination of the values of
empirical constants entering those models and the esti-
mation of their adequacy and ranges of validity by com-
paring the calculation results with experimental data,
are essential stages in the development of new and esti-
mation of the capabilities of the existing models. In per-
forming such investigations, computational errors
inherent in any numerical solution, if not fully elimi-
nated, must be reduced to a minimum. The same is true
of experimental data, especially, those of them which
are used as the boundary conditions or closing relations
in performing calculations. Although it is claimed that
present-day turbulence models are capable of describ-
ing a fairly wide class of turbulent flows (with flow sep-
aration and attachment, substantial curvature of the
lines of flow, sharp variation of conditions on the sur-
face being flown about, etc.), because of the reasons
identified above, a requisite stage in the testing of any
turbulence model is the estimation of its capabilities in
calculating relatively simple canonical turbulent flows.
As applied to wall flows, such a requisite test consists
in the calculation of turbulent boundary layer on a solid
surface. This is due to the fact that the present-day level
of computer development enables one to fairly easily
derive rather exact (free of computational errors due to
the coarseness of grids) solutions of boundary-layer
equations, while for more complex flows, described by
two- and, the more so, three-dimensional Reynolds
equations, the problem remains very complicated and

labor-consuming. Besides, even this “simplest” flow is,
from the physical standpoint, fairly informative,
because it is characterized by a number of complex
effects. For example, an adequate description of the
effect of strong longitudinal pressure gradients on the
structure and basic characteristics of turbulent bound-
ary layer proves too difficult a problem for many known
turbulence models. Therefore, before turning to the
estimation of the capabilities of models in calculating
complex flows, one must first test them in application to
flows of the boundary-layer type, for which extensive
and fairly reliable experimental data have been accu-
mulated.

The problem of objective comparison of numerical
solutions with experimental data remains topical for
flows of the boundary-layer type as well. The reason for
this is as follows.

Within the boundary-layer theory, it is assumed that
the velocity on the external bound of the boundary
layer, the value of which must be known for preassign-
ing the boundary conditions, and its longitudinal gradi-
ent entering the equation of motion must be found inde-
pendently from the solution of Euler’s equations for
nonviscous flow past the surface being investigated.
Given such an approach, the above-identified computa-
tional advantages of turbulent layer approximation, as
compared with complete Navier—Stokes (Reynolds),
equations are reduced considerably, because the solu-
tion of Euler’s equations per se presents a fairly com-
plicated problem. In addition, such an approach, gener-
ally speaking, calls for the use of a special iteration pro-
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cedure with respect to the boundary layer displacement
thickness [1], enabling one to include the inverse effect
of the boundary layer on the nonviscous layer. Along
with this, in order to perform the above-described cal-
culation, one needs data on the geometry of the surface
being flown about for the entire flow, which, as a rule,
are absent in the case of experimental studies involving
the measurement of boundary layer characteristics. In
view of this, the above-identified procedure is not
employed in testing turbulence models within the
boundary layer approximation, and the respective val-
ues, measured in the experiment, are preassigned as the
boundary conditions on the external bound of the
boundary layer. The gradient of longitudinal velocity,
entering the equation of motion, is determined in just
the same way (by the experimental data). The latter fact
may lead to considerable uncontrollable calculation
errors. This is associated both with the asymptotic
behavior of the boundary layer equations (the concept
of the finite layer thickness is conventional and hard-to-
determine in experiments when the flow in nonviscous
flow core is substantially two- or even three-dimen-
sional) and with the need to calculate the derivative of
velocity at the external boundary on the longitudinal
coordinate dU,/dx by the experimental points for U,(x),
which entails great errors and an element of subjectiv-
ity associated with the use of different methods of
“smoothing” the experimental data. Indirectly indica-
tive of the gravity of the above-described difficulties
are the results of numerous experiments in which
boundary layers with a strong adverse (unfavorable)
pressure gradient were investigated (see, for example,
[2, 3]) and the Karman momentum integral equation
was violated,

de dU,/dx C,

ey 0+6%) = =L,

Friia T i R
where 0 and &* denote the integral momentum thick-

ness and the integral displacement thickness of bound-
ary layer, respectively, and Cy is the friction coefficient.
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At first glance, this rules out the possibility of agree-
ment between the results of boundary layer calculations
with the above-mentioned experimental data, irrespec-
tive of the type of turbulence model employed in the
calculations, and gives grounds to doubt the validity of
the classical equations of turbulent boundary layer. For
example, Dmitriev [4] and Tsahalis and Telionis [5]
suggest that it is necessary to include the anisotropy of
normal Reynolds stresses in the preseparation region of
turbulent boundary layer, which leads to the emergence
of an additional term in the boundary layer equations
(the so-called Van Le equations [6]) and to a respective
change in Karman equation (1).

Without disputing this hypothesis, note, however,
that if one estimates the error in determining the veloc-
ity gradient on the external boundary, which leads to
experimentally observed considerable discrepancies of
Karman equation (1), it turns out that this error is not all
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that great and may easily occur in determining the
velocity gradient on the external boundary of the layer
by the experimental data for the velocity proper.

Therefore, the use of the direct method of solving
equation of turbulent boundary layer when testing tur-
bulence models by comparing the calculation results
with experiment entails serious “technological” diffi-
culties and may lead to wrong conclusions about the
capabilities of the models being treated. These difficul-
ties may, however, be avoided when testing models by
using a different approach to the solution of boundary
layer equations, which is usually referred to as the
inverse method [7].

The inverse method consists essentially in that it is
not the velocity on the external bound of the boundary
layer and its gradient which are preassigned from
experiment, but the longitudinal distribution of the
boundary layer displacement thickness, which is mea-
sured fairly accurately in the experiments. By doing so,
one can avoid the operation (which involves great
errors) of determining the velocity gradient on the
external boundary by the experimental data, because,
within the framework of the inverse method, both the
velocity on the external bound of the boundary layer
and its gradient are the sought quantities to be deter-
mined in the process of calculations. In estimating the
turbulence model, these quantities, along with the
remaining calculated characteristics of the boundary
layer, must be compared with the respective experi-
mental data.

This study is aimed at demonstrating the advantages
of the inverse method (compared with the direct one)
and using this method for detailed testing of both a
series of well-known turbulence models and those pro-
posed relatively recently as applied to boundary layers
with adverse, accelerating, and alternating-sign pres-
sure gradients.

FORMULATION OF THE PROBLEM
AND CALCULATION METHOD

The set of equations of turbulent boundary layer on
a flat or axisymmetric surface in the case of incom-
pressible liquid flow has the form [1]

u@+v—a—L—¢ = ili(rm( + )%)+U L
ay_ pay K p-Tay e dx’

dx
a(r®u) 9(r*v) ol
dx i dy .

Here, x, y and u, vdenote the longitudinal and trans-
verse coordinates, and velocity components, respec-
tively; p is the density; p and [ denote the molecular
and turbulent viscosity, respectively; & = O for plane
and o = 1 for axisymmetric flow; and r is the distance
from the point at hand to the axis of symmetry.

Preassigned on a solid wall as the boundary condi-
tions for the set of equations (2) are the no-slip condi-

2
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tions for the longitudinal component and impermeabil-
ity conditions for the transverse component of the
velocity vector. As already mentioned, when the direct
method of solution (2) is used, the experimentally mea-
sured distribution of velocity along the external bound-
ary U (x) is preassigned as the second boundary condi-
tion for its longitudinal component, and the velocity
gradient appearing in equation (2) is determined by
some approximate method of differentiating this exper-
imental distribution. As a rule, the experiment yields
the values of U,(x) only in separate points that are quite
far apart, and this obviously makes the procedure rather
inexact and, in addition, strongly dependent on the
employed method of “differentiation.”

In the inverse method, the integral displacement
thickness 6* or some other quantity (momentum thick-
ness 6, friction coefficient on the wall C)) is preassigned
as the missing boundary condition from experiment. In
so doing, the solution procedure is fully analogous to
the methods employed to calculate internal flows
within the narrow channel approximation, when the
longitudinal distribution of pressure is determined from
the integral balance of mass using the appropriate mod-
ification of the sweep algorithm during numerical inte-
gration of the equation of motion [8]. The only differ-
ence is that, in solving the boundary layer equation (2)
by the inverse method, the preassignment of the flow
rate of liquid through the channel is replaced by the pre-
assignment of the longitudinal distribution of the
boundary layer displacement thickness &*.

The numerical integration of the set of equations (2)
was performed using a two-layer implicit finite-differ-
ence schema of the first order of accuracy on the longi-
tudinal coordinate and of the second order of accuracy
on the transverse coordinate. At every step with respect
to x, the system of difference equations is solved using
the above-described modification of the sweep method
with iterations for nonlinearity.

TURBULENCE MODELS

The turbulence models treated by us include the
Cebeci—Smith algebraic model [9] (CS), two so-called
semidifferential models (the Johnson—-King model [10]
(JK) and the Horton model [11] (HO)), two differential
models with one equation for turbulent viscosity (the
model of A.N. Sekundov and associates [12] (v;-92)
and the Spalart—Allmaras model [13] (SA)), and three
differential models with two equations (the k—€ models
of Launder—Sharma [14] (LS) and Chien [15] (CH) and
the k~® model of Menter [16] (M-SST)).

The algebraic and semidifferential models are con-
structed according to the classical two-layer Clauser
scheme of turbulent boundary layer and employ, as lin-
ear and velocity scales defining the turbulent viscosity,
quantities characteristic of flows of the boundary layer
type, such as the boundary layer thickness 8, the dis-
placement thickness &*, the velocity on the external
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bound of the boundary layer U,, and the dynamic veloc-
ity 9, = (1,/p)'?, which makes difficult (and some-
times rules out) the possibility of using them to calcu-
late flows of complicated geometry. From this stand-
point, the differential models of [12-16] are more
universal.

All of the models listed above, except for the Horton
model [11], are well known and described in detail in a
number of papers. Therefore, we will formulate only
the basic relations of the Horton model, according to
which the turbulent viscosity is found by the formula

Vi = Votanh(Ve/vro)[1 + (0.17y/8%)°1 . (3)

Here, the quantities vy, Vg, p*, and the damping
factor D are defined by the relations
du

gy 2 (KyD)Ztl L Vro = S(x)kU,5*,

172

- 1_ yvi(l-bp") )
D=1 exp( v I "
+_ VU, U,
7= vy 0x’

and the parameter ¢ is found from the solution of the
following ordinary differential equation:

d(as)
. dx

where 9§ is the boundary layer thickness determined by
the level of u/U, = 0.995, a = 6%%°, and the quantity s(x)
is determined by the formula

(8* Ju )0'69
s = =
y=0.58

U,dy
The model constants are as follows: kK = 0.41, A =
26, k=0.018,

= Cis(1-a),

% {14-76 for p'20 {0.5 for 6> 0
_ -
12.60 for P+ <0, 0.14 for 6 <0.

COMPARISON OF THE DIRECT
AND INVERSE METHODS

In order to compare the capabilities of the direct and
inverse methods of solving boundary layer equations in
testing turbulence models, two typical flows in bound-
ary layers in the presence of an adverse pressure gradi-
ent were selected, which were experimentally investi-
gated by Ludvig-Tielman (see the Stanford Conference
Proceedings [2]) and Dangel-Fernholz [17]. In the first
instance (Experiment 1200), the flow near a plane sur-
face was treated, and in the second instance, the flow
near an axisymmetric surface. The calculations of these
two flows were performed by both direct and inverse




o H U,
0.004 2.5T40
2.0-
0.003 i
1.5
0.002 20
1.0+
0.001 H10
0.5+
0 1 1 1
0.5 1.3 25 35 4.5
X, m

GARBARUK et al.

Cy H U,
0.005 3115
0.004

210

0.003
0.002

1+5
0.001

0 L | Il 0

0.4 0.8 1.2 1.6
X, m

Fig. 1. Comparison of the direct and inverse methods of solving boundary layer equations when using the M-SST model, as illus-
trated by the example of experiments (a) 1200 and (b) DF: I, inverse method; 11, direct method; (/) longitudinal distribution of the
friction coefficient Cy, (2) longitudinal distribution of the form parameter H, (3) longitudinal distribution of the velocity U, on the
external bound of the boundary layer. The curves indicate calculation results, and the points indicate experimental data.

methods, using the M-SST model, which, according to
the available literature data, provides a fairly accurate
description of boundary layers with adverse pressure
gradient.

The flow parameters defining the flow (U, (x) for the
direct method and &*(x) for the inverse one) were pre-
assigned from experiment without any smoothing, and
the experimental data were interpolated to the compu-
tational grid with the aid of cubic splines. In so doing,
the derivative of velocity on the external bound of the
boundary layer (which must be preassigned in the case
of direct method) was determined analytically by spline
differentiation.

The calculation results given in Fig. 1 illustrate
fairly clearly the nature and scale of the differences
between the direct and inverse approaches to the solu-
tion of boundary layer equations. In particular, an anal-
ysis of these results produces diametrically opposite
conclusions about the capabilities of the turbulence
model being treated. According to the direct method,
the M-SST model is incapable of correctly predicting
the characteristics of a boundary layer on approaching
the separation point, while the results derived with the
aid of this model by the inverse method (including the
longitudinal distribution of velocity) are in adequate
agreement with the experimental data in the entire
region of flow. Note that the selected method of “restor-
ing” the velocity gradient on the external bound of the
boundary layer by experimental data (using splines) is
not the only available, and other methods may be

apparently used to considerably improve the agreement
of the results of calculation by direct method with the
experimental results for the flows treated above. How-
ever, the foregoing examples clearly indicate that no
such problem arises in the case of the inverse method,
and this obviously makes the latter method a more
objective tool for testing turbulence models. Given
below are the results of such testing for a fairly wide
class of turbulent boundary layers with pressure gradi-
ent.

RESULTS OF TESTING OF TURBULENCE
MODELS

In order to estimate the capabilities of eight turbu-
lence models listed above, we selected a series of
experimental investigations of plane and axisymmetric
boundary layers, which yielded fairly complete and
reliable results of measurements of the main character-
istics of flow in a wide range of variation of parameters
on the external boundary of the layer. The list of treated
flows with their brief characteristics is given in the
table. A part of the experimental data were borrowed
from the Stanford Conference Proceedings [2] (in the
table, the respective experiments are given the same
designations as in [2]). The remaining experimental
data were borrowed from original papers, references to
which are also made in the table.

The calculation results are given in Figs. 2—-10.
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Table
Designation Types of flow Refs.
2700 Accelerating pressure gradient Herring, Norbury [2]
0141 Adverse pressure gradient Samuel, Joubert [18]
3300 Adverse pressure gradient Bradshaw [2]
4800 Adverse pressure gradient Schubauer, Spangenberg [2]
™ Alternating-sign pressure gradient Tsuji, Morikawa [19]
1200 Adverse pressure gradient (preseparation flow) Ludweig, Tillman [2]
0431 Alternating-sign pressure gradient (preseparation flow) Simpson, Chew, Shivaprasad [3]
DF Adverse pressure gradient (axisymmetric preseparation flow) Dangel, Fernholz [17]

As was to be expected, the results of calculation of
flow with a favorable pressure gradient (experiment
2700) are little sensitive to the turbulence model
employed and, by and large, agree fairly well with the
experimental data (see Fig. 2). The greatest discrepancy
between the models is observed in the case of longitu-
dinal distribution of the friction coefficient. The best
agreement with experiment with respect to this param-
eter is provided by the simplest of algebraic and semid-
ifferential models, namely, the CS model (see Fig. 2a).
Both differential models with one equation (v-92 and
SA models) yield results that are very close to one
another (only an insignificant advantage of the v;-92
may be noted) and exceed considerably all models in
the first group as regards the accuracy of calculation of
friction (see Figs. 2a, 2b). Of the differential models
with two equations (see Fig. 2c), the M-SST model is
advantageous over the models of the k—& group (LS and
CH models) and quite comparable in accuracy with the
vr-92 model (see Figs. 2b, 2c). The situation is differ-
ent when calculating boundary layvers with an adverse

(unfavorable) pressure gradient. Before turning to the
analysis of the results, it is to be reminded that, as
already mentioned in the introduction, most of the
experimental results exhibit more or less significant
violation of the Karman momentum integral equation
(1), and it is for this reason that the data of experiments
1200 and 0431 have not been used recently to test tur-
bulence models (see, for example, [20]). The results
given below indicate that, when the inverse method of
solving boundary layer equations is used, the above-
identified “defect” of these experiments does not play a
significant role and manifests itself only as some mis-
match of the calculated and experimentally obtained
values of velocity distribution on the external bound of
the boundary layer, which may be quite possibly attrib-
uted to the reasons specified at the beginning of this

paper.

The calculation results pertaining to boundary lay-
ers with an adverse pressure gradient are given in
Figs. 3—7. Their analysis leads to the following conclu-
sions.
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Fig. 2. Comparison of the calculation results with the data of experiment 2700: (a) CS (I), HO (II), and JK (IIT) models; (b) SA (I)
and v7-92 (II) models; (c) LS (I), CH (II), and M-SST (III) models. (/-3) see Fig. 1. The curves indicate calculation results, and the

points indicate experimental data.
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Fig. 3. Comparison of the calculation results with the data of Experiment 0141. Designations are the same as in Fig. 2.
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Fig. 5. Comparison of the calculation results with the data of Experiment 4800. Designations are the same as in Fig. 2.
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Fig. 7. Comparison of the calculation results with the data of Experiment DF. Designations are the same as in Fig. 2.

In all of the treated cases, the HO model is the most
advantageous of the algebraic and semidifferential
models (see Figs. 3a—7a). It provides for a fairly high
accuracy of calculation of longitudinal distributions of
all main characteristics of boundary layer in the entire
region of flow, including in the vicinity of the separa-
tion layer, and enables one to calculate quite adequately
the velocity profiles (Fig. 8) in this region, which pre-
sents most difficulties for simulation.

The characteristic drawback of the CS model is the
underestimation of friction on the wall and, accord-
ingly, the prediction of earlier (than in the experiments)
separation of boundary layer. On the contrary, the
semidifferential JK model first overestimates friction
and then, on approaching separation, predicts its
greater (than in the experiment) decrease.

The observed drawbacks of the CS and JK models
also show up when calculating the velocity profiles in
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the boundary layer (Fig. 8) and, to a somewhat lesser
degree, when calculating the longitudinal distribution
of the form parameter of boundary layer H = §*/6.

The results of calculations using two differential
turbulence models with one equation (v-92 and SA)
being treated, as in the case of boundary layer with an
accelerating pressure gradient, are rather close to one
another (some exception being only the DF experiment,
in which the axisymmetric flow was investigated rather
than plane flow) and, by and large, agree adequately
with experiment, though not as well as the HO model
(see Figs. 3b—7b).

The analysis of the results derived from the calcula-
tion of boundary layers with an adverse pressure gradi-
ent using differential models of turbulence with two
equations (Figs. 3c—7c) fully supports the conclusions,
made as a result of numerous recent investigations (see,
for example, [20, 21]), about the invalidity of models of
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Fig. 8. Comparison of the calculated and experimentally obtained velocity profiles (a) for Experiment 0141 atx = 3.4 m, (b) for
Experiment DF at x = 0.931 m, and (c) for Experiment 0431 atx = 3.1 m; (/) CS model, (2) HO, (3) JK, (4) SA, (5) v-92, (6) LS,
(7) CH, and (8) M-SST. The curves indicate calculation results, and the points indicate experimental data.
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Fig. 9. Comparison of the calculation results with the data of Experiment 043 1. Designations are the same as in Fig. 2.

the k—€ type for calculation of flow of this class. In all  of the friction coefficient in the neighborhood of the
of the treated cases, models of this class (LS and CH separation point. As distinct from these models, the M-
models) greatly overestimate friction on the wall in the = SST k— model in all of the treated cases yields fairly
preseparation region and, in some cases (Experiment exact results with respect to all characteristics of
4800, Fig. 5¢), lead to a qualitatively incorrect behavior ~ boundary layers with an adverse pressure gradient and
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Fig. 10. Comparison of the calculation results with the data of Experiment TM. Designations are the same as in Fig. 2.

proves competitive with the HO model, which, for
flows of this class, as was demonstrated above, is the
best of the group of algebraic and semidifferential mod-
els.

We will now treat the results of calculations of a
boundary layer with an alternating-sign pressure gradi-
ent (Experiments TM and 0431, Figs. 9 and 10). As was
to be expected, these flows turned out to be most com-
plicated for calculation, because, for their description,
a turbulence model must respond adequately to rapid
changes of the parameters of external flow, when sig-
nificant importance is acquired by the “memory”
effects that are little susceptible to simulation within
semiempirical models based on turbulent viscosity. In
particular, as is seen in Fig. 10, in this case even the best
of the treated models (HO, v;-92, SA, and M-SST
models), which enable one to fairly adequately calcu-
late the characteristics of boundary layers with both
accelerating and adverse pressure gradients, are incapa-
ble of describing with acceptable accuracy the reaction
of flow to the change of gradient sign from positive
(decelerated flow) to negative (accelerated flow).
Although all models correctly describe this effect from
the qualitative standpoint, the discrepancy between the
calculation results and experiment in this region, for
example, with respect to the friction coefficient,
reaches 20-30%. On the other hand, these models, as
distinct from the rest of the models. enable one to fairly
accurately describe the variation of the characteristics
of boundary layer during reverse variation of the accel-
eration sign (transition from accelerated to decelerated
flow) in both the TM and the 0431 experiments.

CONCLUSION

In conclusion, we will briefly formulate the main
results of our investigations.
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It is shown that, in estimating the capabilities of the
existing and calibrating new turbulence models by way
of comparing the calculation results with experiment
for turbulent boundary layers with a longitudinal pres-
sure gradient, the inverse method of solving boundary
layer equations proves more convenient and enables
one to obtain more objective information about models
than the traditional direct method. The inverse method
was used to perform a detailed testing of a wide class of
semiempirical turbulence models based on turbulent
viscosity, as applied to the calculation of wall boundary
layers with accelerating, adverse, and alternating-sign
pressure gradients. It is shown that the Horton model
(3) yields the best results from among algebraic and
semidifferential turbulence models oriented to the cal-
culation of flows of the type of boundary layer. Promi-
nent among differential models are the Menter k—®
model and the v;-92 and Spalart-Allmaras models,
which contain one differential equation for turbulent
viscosity. They are all greatly superior to the models of
the k—& group (Launder—Sharma and Chien models)
and quite competitive with the Horton model. In so
doing, the Menter model yields better results for flows
with a significant adverse pressure gradient than all
other models. At the same time, none of the treated
models provides a sufficiently accurate description of
the characteristics of substantially nonequilibrium
boundary layers with an alternating-sign pressure gra-
dient in the region of transition from decelerated to
accelerated flow.
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